Name	ne of the course POWERELECTRONICS AND DI			S
Cours	Course Code: PC-ECS 601 Semester: 6 th			
Durat	ion: 6 months Ma	ths Maximum Marks: 100		
Teach	ning Scheme Ex	Examination Scheme		
		id Semester Exam: 15 Marks		
		ssignment & Quiz: 10 Marks		
Practi		tendance: 05 Marks		
		d Semester Exam: 70 Marks		
Crear	t i omo. 3	ad Semester Exam. 70 Marks		
Objec	ctive:			
$\frac{3 z_{\mathbf{j}} \mathbf{c}}{1}$.	To understand the principal and operation of	semiconductor devices		
2.	To apprehend the working principle of Phase		C con	verters
3.	To understand basics of Induction, DC and S		C 0011	. 01 (013.
4.	To solve problems based on Industrial applic			
	1	auuli.		
	Requisite:			
1.	Electric Circuit Theory (PC-ECS 301)	`		
2.	Analog and digital Electronics (ES-ECS 301)		
3.	Electric Machines (PC-ECS 401)			
Unit	Content		Hrs	Marks
	Introduction: Application of power electronics, advantages and 02		1113	
1	Introduction: Application of power	electronics, advantages and		
1	disadvantages of power electronics convert	ters, power electronics systems,		
	disadvantages of power electronics convert power diodes, Power transistors, power MOS	ters, power electronics systems, SFETS, IGBT and GTO.	02	
2	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of		
	disadvantages of power electronics convert power diodes, Power transistors, power MOS	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics	02	
2	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full controlled, full controlled.	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L	02	
2	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L	02	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters.	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the	02 02 04	
2	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operations	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the	02	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits based on the power of t	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the	02 02 04	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits bas performance parameters,	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the	02 02 04	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits bas performance parameters, Inverters:	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L les and source inductance on the on, control strategies, step up sed on quadrant of operation,	02 02 04	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits bas performance parameters,	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the con, control strategies, step up sed on quadrant of operation,	02 02 04	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits bas performance parameters, Inverters: Principle of operation of single phase and the	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the con, control strategies, step up sed on quadrant of operation,	02 02 04	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits base performance parameters, Inverters: Principle of operation of single phase and the and R-L loads, performance parameters of control and harmonic reduction of inverters. Electric Drive: Concept, classification, particulated and particular parameters.	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L les and source inductance on the on, control strategies, step up sed on quadrant of operation, ree phase bridge inverter with R f inverters, methods of voltage	02 02 04	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits base performance parameters, Inverters: Principle of operation of single phase and the and R-L loads, performance parameters of control and harmonic reduction of inverters. Electric Drive: Concept, classification, paradives. Types of Loads, Components of loads.	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and controlled converters with R, R-L les and source inductance on the con, control strategies, step up sed on quadrant of operation, ree phase bridge inverter with R f inverters, methods of voltage rts and advantages of electrical ad toques, Fundamental torque	02 04 08	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits base performance parameters, Inverters: Principle of operation of single phase and the and R-L loads, performance parameters of control and harmonic reduction of inverters. Electric Drive: Concept, classification, particles. Types of Loads, Components of load equations, Equivalent value of drive parameters.	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L les and source inductance on the on, control strategies, step up sed on quadrant of operation, ree phase bridge inverter with R f inverters, methods of voltage rts and advantages of electrical ad toques, Fundamental torque ters for loads with rotational and	02 04 08	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits base performance parameters, Inverters: Principle of operation of single phase and the and R-L loads, performance parameters of control and harmonic reduction of inverters. Electric Drive: Concept, classification, particles. Types of Loads, Components of local equations, Equivalent value of drive parameter translational motion. Determination of methods	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L les and source inductance on the on, control strategies, step up sed on quadrant of operation, ree phase bridge inverter with R f inverters, methods of voltage rts and advantages of electrical ad toques, Fundamental torque ters for loads with rotational and oment of inertia, Steady state	02 04 08	
3	disadvantages of power electronics convert power diodes, Power transistors, power MOS PNPN devices: V-I characteristics and appli SCR, SCR turn on methods, switching chara Phase controlled converters: Principle of three phase half wave, half controlled, full coand RLE loads, effects of freewheeling diod performance of converters. DC-DC converters: Principle of operation choppers, types of choppers circuits base performance parameters, Inverters: Principle of operation of single phase and the and R-L loads, performance parameters of control and harmonic reduction of inverters. Electric Drive: Concept, classification, particles. Types of Loads, Components of load equations, Equivalent value of drive parameters.	ters, power electronics systems, SFETS, IGBT and GTO. cations. Two transistor model of cteristics, gate characteristics coperation of single phase and ontrolled converters with R, R-L les and source inductance on the on, control strategies, step up sed on quadrant of operation, ree phase bridge inverter with R f inverters, methods of voltage rts and advantages of electrical ad toques, Fundamental torque ters for loads with rotational and oment of inertia, Steady state	02 04 08	

6	Stating of Electric Drives: Effect of starting on Power supply, motor and	06	
	load. Methods of starting electric motors. Acceleration time, Energy		
	relation during stating. Methods to reduce the Energy loss during starting.		
	Breaking of Electric Drives: Types of braking, Breaking of DC motor,		
	Induction motor and Synchronous motor, Energy loss during braking.		
7	Induction motor drives: Stator voltage variation by three phase	08	
	controllers, Speed control using chopper resistance in the rotor circuit, slip		
	power recovery scheme. Pulse width modulated inverter fed and current		
	source inverter fed induction motor drive. Volts/Hertz Control, Vector or		
	Field oriented control.		
	DC motor drives: Single phase, three phases fully controlled and half		
	controlled DC drives.		
8	Synchronous motor drives: Variable frequency control, Self Control,	04	
	Voltage source inverter fed synchronous motor drive, Vector control.		
9	Industrial application: Drive consideration for Textile mills, Steel rolling	02	
	mills, Cement mills, Paper mills, Machine tools. Cranes & hoist drives.		

Text books:

- 1. Fundamental of Electrical Drives, G.K. Dubey, New Age International Publication.
- 2. Electric Drives, Vedam Subrahmanyam, TMH.
- 3. A first course on Electrical Drives, S.K. Pillai, New Age International Publication.
- 4. Power Electronics, M.H. Rashid,4thEdition, Pearson.
- 5. Power Electronics, P. S. Bimbhra, Khanna Publishing House.

Reference books:

- 1. Electric motor drives, R. Krishnan, PHI.
- 2. Modern Power Electronics & Ac drives, B.K. Bose, Pearson Education.
- 3. Electric Motor & Drives. Austin Hughes, Newnes.
- 4. Power Electronics, M. D. Singh and K. B. Khanchandani, Tata McGraw Hill.

Course Outcome:

After completion of this course, the learners will be able to

- 1. understand the fundamentals of semiconductor devices.
- 2. describe working principle of Phase controlled converters and DC- DC converters.
- 3. understand basics of Induction, DC and Synchronous motor drives.
- 4. design suitable drive system for Industrial application.
- 5. solve problems based on different converters, and drive system.

Special Remarks:

Name of the course	DATABASE MANAGEMENT SYSTEMS

Cours	se Code: PC-ECS 602 Sen	nester: 6 th		
Durat	tion: 6 months Ma	Maximum Marks: 100		
T1	Line Colomb			
	8	Examination Scheme Mid Semester Exam: 15 Marks		
		endance: 05 Marks		
Credi	End Semester Exam: 70 Marks			
Obje	ctive:			
1.	To understand the different issues involved in	the design and implementation of	of a da	tabase
	system.			
2.	To study the physical and logical database de-	signs, database modelling, relation	nal,	
	hierarchical, and network models.			
3.	To understand and use data manipulation lang	guage to query, update, and mana	ge a da	atabase.
4.	To develop an understanding of essential DB	MS concepts such as: database se	curity	,
	integrity, concurrency, distributed database, a	nd intelligent database, Client/Se	rver	
	(Database Server), Data Warehousing.			
5.	To design and build a simple database system	.		
	fundamental tasks involved with modelling, of			
6.	To understand the different issues involved in	the design and implementation of	of a da	tabase
	system.			
	Requisite:			
1.	Electric Circuit Theory (PC-ECS 301)			
2.	Analog and Digital Electronics (ES-ECS 301))		
Unit	Content		Hrs	Marks
1	Database system architecture: Data Abstraction	ction Data Independence Data	02	IVICINS
-	Definition Language (DDL), Data Manipul		02	
	models: Entity-relationship model, network	G G ()		
	oriented data models, integrity constraints, data manipulation operations.			
2	Relational query languages: Relational	algebra, Tuple and domain	12	
	relational calculus, SQL3, DDL and DML	constructs, Open source and		
	Commercial DBMS - MYSQL, ORACLE,			
	database design: Domain and data dependenc			
	forms, Dependency preservation, Lossless	· ·		
	1 -	algebra expressions, Query		
	equivalence, Join strategies, Query optimizati			
3	Storage strategies: Indices, B-trees, hashing		04	
4	Transaction processing: Concurrency		06	
	Serializability of scheduling, Locking and timestamp-based schedulers, Mult			

	version and optimistic Concurrency Control schemes, Database recovery.		
5	Database Security: Authentication, Authorization and access control, DAC,	06	
	MAC and RBAC models, Intrusion detection, SQL injection.		
6	Advanced topics: Object oriented and object relational databases, Logical	06	
	databases, Web databases, Distributed databases, Data warehousing and		
	data mining.		

Text books:

- 1."Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.
- 2."Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer Science Press.
- 3. Database Management Systems, R.P. Mahapatra, Khanna Publishing House, New Delhi (AICTE Recommended Textbook 2018).

Reference books:

- 1. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe,
- 2. Pearson Education "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley.

Course Outcome:

After completion of this course, the learners will be able to

- 1. understand the basic concepts of database management systems.
- 2. apply SQL to find solutions to a broad range of queries.
- 3. apply normalization techniques to improve database design.
- 4. analyse a given database application scenario to use ER model for conceptual design of the database.
- 5. familiar with basic database storage structures and access techniques.
- 6. Implement the isolation property including locking, time stamping based on concurrency control and Serializability of scheduling.

Special Remarks:

Name of the course	Machine Learning & Deep Learning
Course Code: PC-ECS 601A	Semester: 6th

Duration: 6 months	Maximum Marks: 100	
Teaching Scheme	Examination Scheme	
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks	
Tutorial: Nil	Assignment & Quiz: 10 Marks	
Practical: Nil	Attendance: 05 Marks	
Credit Points: 3	End Semester Exam: 70 Marks	
Objective:	,	
1. To learn the concept of I	now to learn patterns and concepts from data without being	
evalicitly programmed	avaliantly are grouped	

- explicitly programmed
- 2. To design and analyze various machine learning algorithms and techniques with a modern outlook focusing on recent advances.
- Explore supervised and unsupervised learning paradigms of machine learning. 3.
- 4. To explore Deep learning technique and various feature extraction strategies.

Pre-Requisite:

Unit	Content	Hrs	Marks
1.	Supervised Learning (Regression/Classification)	10	
	Basic methods: Distance-based methods, Nearest-Neighbors, Decision		
	Trees, Naive Bayes, Linear models: Linear Regression, Logistic		
	Regression, Generalized Linear Models, Support Vector Machines,		
	Nonlinearity and Kernel Methods, Beyond Binary Classification: Multi-		
	class/Structured Outputs, Ranking		
2.	Unsupervised Learning	7	
	Clustering: K-means/Kernel K-means, Dimensionality Reduction: PCA		
	and kernel PCA, Matrix Factorization and Matrix Completion, Generative		
	Models (mixture models and latent factor models)		
3.	Evaluating Machine Learning algorithms and Model Selection,	6	
	Introduction to Statistical Learning Theory, Ensemble Methods (Boosting,		
	Bagging, Random		
	Forests)		
4.	Artificial Neural Network, activation function, multi-layer neural network.	6	
	Training Neural Network: Risk minimization, loss function, back		
	propagation, regularization, model selection, and optimization		
5.	Deep Learning: Deep Feed Forward network, regularizations, training	6	
	deep models, dropouts, Convolutional Neural Network, Recurrent Neural		
	Network, Deep Belief Network		
6.	Deep Learning research: Object recognition, sparse coding, computer	5	
	vision, natural language processing		

Text books:

- 1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009 (freely available online)
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007
- 4. Dr. Rajiv Chopra, Machine Learning, Khanna Publishing House, 2018
- 5. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

Course Outcome:

After completion of this course, the learners will be able to

- 1. Apply supervised learning techniques
- 2. Implement unsupervised learning algorithms
- 3. Evaluate and select machine learning models
- 4. Design and train neural networks
- 5. Develop deep learning models for real-world applications

Special Remarks:

Name of the course	SOFT COMPUTING TECHNIQUES
Course Code: PE-ECS 601B	Semester: 6th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks

Tutor	rial: 0 hr/week Assig	nment & Quiz	z: 10 Marks		
Credit Points: 3 Attendance: 05		05 Marks			
	End 9	Semester Exar	n: 70 Marks		
Obje	ctive:				
1.	To understand the theory of Neural network, Fuzzy logic and Genetic Algorithm.				
2.	To Introduce neural networks, Genetic Algorithm and Fuzzy logic from an en		ngine	ering	
	perspective.				
Pre-R	Requisite				
1.	Programming for problem solving				
Unit	Content			Hrs	Marks
	Introduction: Introduction to soft computing; in	ntroduction to	fuzzy sets	5	
1	and fuzzy logic systems; introduction to biologic	cal and artifici	al neural		
	network; introduction to Genetic Algorithm.				
	Fuzzy sets and Fuzzy logic systems: Classical	Sets and Fu	ızzy Sets and	12	
2	Fuzzy relations: Operations on Classical sets, p	properties of	classical sets,		
	Fuzzy set operations, properties of fuzzy sets, of	cardinality, op	erations, and		
	properties of fuzzy relations. Membership	functions:	Features of		
	membership functions, standard forms a	nd boundari	es, different		
	fuzzification methods. Fuzzy to Crisp conversion	ons: Lambda (Cuts for fuzzy		
	sets, fuzzy Relations, Defuzzification methods.	Classical Log	gic and Fuzzy		
	Logic: Classical predicate logic, Fuzzy Logic, A	pproximate r	easoning and		
	Fuzzy Implication Fuzzy Rule based Systems: Lii	nguistic Hedge	es, Fuzzy Rule		
	based system – Aggregation of fuzzy Rules,	Fuzzy Infere	ence System-		
	Mamdani Fuzzy Models – Sugeno Fuzzy Mod	dels. Applicati	ons of Fuzzy		
	Logic: How Fuzzy Logic is applied in Home Appl	iances, Gener	al Fuzzy Logic		
	controllers, Basic Medical Diagnostic systems	and Weathe	er forecasting		
	Fuzzy Control, Convention control systems, F	uzzy logic co	ntrol vs. PID		
	control.				
	Neural Network: Introduction to Neural Net	works: Adven	t of Modern	10	
	Neuroscience, Classical AI and Neural Networ	ks, Biological	Neurons and		
3	Artificial neural network; model of artificial ne	euron. Learnir	ng Methods :		
	Hebbian, competitive, Boltzman etc., N	eural Netwo	ork models:		
	Perceptron, Adaline and Madaline networks;	single layer n	etwork; Back		
	propagation and multi layer networks. Comp	etitive learni	ng networks:		
	Kohonen self organizing networks, Hebbian lea	arning; Hopfie	eld Networks.		
	Neuo-Fuzzy modelling:Applications of Ne	ural Netwo	rks: Pattern		
	Recognition				
	and classification:				

	Genetic Algorithms: Simple GA, crossover and mutation, Multi-objective	8	
	Genetic Algorithm (MOGA). Applications of Genetic Algorithm: genetic		
4.	algorithms in search and optimization, GA based clustering Algorithm,		
	Image processing and pattern Recognition		
5.	Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant	5	
	colony optimization (ACO), Particle Swarm Optimization (PSO).		

Text book:

- 1. Fuzzy logic with engineering applications, Timothy J. Ross, Wiley ,2011
- 2. Neural Networks Fuxxy Logic and Genetic Algorithm: Synthesis and Application, S.Rajashekharan and G.A. Vijaylakshmi Pai, PHI,2013
- 3. Principles of Soft Computing, S N Sivanandam, S.N. Deepa, Wiley, 2011.

Reference books:

- 1. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Addison Wesley, 1989.
- 2. Neuro-Fuzzy and Soft computing, Jang, Sun, Mizutani, Pearson, 1996.
- 3. Neural Networks: A Classroom Approach, Satish Kumar, McGraw Hill, 2017.
- 4. Genetic Algorithms in search, Optimization & Machine Learning by David E. Goldberg, Pearson/PHI
- 5. Introduction to Soft Computing-Neuro Fuzzy and Genetic Algorithm, Samir Roy & UditChakraborty, Pearson, 2013.

Course Outcome:

After completion of this course, the learners will be able to

- 1. explain soft computing techniques and their roles in building intelligent machines
- 2. anlyse the feasibility of application of soft computing techniques for a particular problem
- 3. effectively use existing software tools to solve real problems using a soft computing approach
- 4. evaluate solutions by various soft computing approaches for a given problem.
- 5. apply different soft computing techniques to solve Engineering problems.

Special Remarks:

Name of the course	POWER SYSTEM ANALYSIS
Course Code: PE-ECS 601C	Semester: 6th
Duration: 6 months	Maximum Marks: 100

Teacl	ning Scheme	Examination Scheme		
Theor	ry: 3 hrs/week	Mid Semester Exam: 15 Marks		
Tutor	orial: Nil Assignment & Quiz: 10 Marks			
Practi	cal: Nil	Attendance: 05 Marks		
Credi	t Points: 3	End Semester Exam: 70 Marks		
Obje	ctive:			
1.	To understand the modeling and analysis	of electrical power systems.		
2.	To acquire knowledge of power flow stud	dies and solution techniques.		
3.	To study symmetrical and unsymmetrical	I fault analysis methods.		
4.	To analyze power system stability under	dynamic conditions.		
Pre-F	Requisite:			
1.	Electric Circuit Theory (PC-ECS 301)			
2.	Electric Machines (PC-ECS 401)			
3.	Power System (PC-ECS 402)			
Unit	Conten	ıt	Hrs	Marks
1.	POWER SYSTEM		8	
	Need for system planning and operational studies – Power scenario in			
	India – Power system components, Representation – Single line diagram –			
	per unit quantities – p.u. impedance diagram – p.u. reactance diagram, Network graph Theory – Bus incidence matrices, Primitive parameters,			
	Formation of bus admittance matrix – Dr. Transformation method.	meet inspection method – Singular		
2.	POWER FLOW ANALYSIS		9	
2.	Bus classification – Formulation of	Power Flow problem in polar		
	coordinates – Power flow solution using	1		
	of Voltage controlled buses – Power Fl	-		
	method – Flow charts – Comparison of n	· · · · · · · · · · · · · · · · · · ·		
3.	SYMMETRICAL FAULT ANALYSIS		7	
۶.	Assumptions in short circuit analysis –		,	
	using Thevenin's theorem – Bus Impe	•		
	(without mutual coupling) – Symmet	•		
	impedance matrix – Post fault bus voltag	ges – Fault level – Current limiting		
4.	reactors.	CTC	0	
4	UNSYMMETRICAL FAULT ANALYS		8	
т.	Nummatrical components Seguence in	npedances – Sequence networks –	i .	
т.		•		
т.	Analysis of unsymmetrical faults at gene	erator terminals: LG, LL and LLG		
	Analysis of unsymmetrical faults at gene – unsymmetrical fault occurring at any pe	erator terminals: LG, LL and LLG		
5.	Analysis of unsymmetrical faults at gene	erator terminals: LG, LL and LLG	8	

Classification of power system stability - Rotor angle stability - Power-

Angle equation – Steady state stability – Swing equation – Solution of swing equation by step by step method – Swing curve, Equal area criterion – Critical clearing angle and time, Multi-machine stability analysis – modified Euler method.

Text books:

- 1. John J. Grainger, William D. Stevenson, Jr, 'Power System Analysis', Mc Graw Hill Education (India) Private Limited, New Delhi, 2017.
- 2. Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, 3rd edition 2019.
- 3. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.

Reference books:

- 1. Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- 2. J. Duncan Glover, Mulukutla S.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 3. P. Venkatesh, B. V. Manikandan, A. Srinivasan, S. Charles Raja, "Electrical Power Systems: Analysis, Security and Deregulation" Prentice Hall India (PHI), second edition 2017
- 4. Gupta B.R., 'Power System Analysis and Design', S. Chand Publishing, Reissue edition 2005.
- 5. Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013

Course Outcome:

After completion of this course, the learners will be able to

- 1. Interpret and model the components of a power system using single line and per-unit representations.
- 2. Solve power flow problems using iterative numerical methods such as Gauss-Seidel and Newton-Raphson.
- 3. Analyze the behavior of a power system under symmetrical and unsymmetrical fault conditions.
- 4. Apply stability analysis techniques to determine the response of a power system under transient conditions.
- 5. Use matrix methods and network theory to form admittance and impedance models for large-scale power systems.

Special Remarks:

Name of the course	DESIGN AND ANALYSIS OF ALGORITHM
Course Code: PC-ECS 602A	Semester: 6 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks

Tutor	ial: 0 hr/week	Assignment & Quiz: 10 Marks			
Practi	cal: 0 hrs/week	Attendance: 05 Marks			
Credi	Credit Points: 3 End Semester Exam: 70 Marks				
Obje	ctive:				
1.	To design efficient algorithms for	a variety of computational problems.			
2.	To analyze their performance in te	rms of time and space complexity, and prov	e their	•	
	correctness.				
3.	To analyze the asymptotic perform	ance of algorithms.			
4.	To apply important algorithmic de	sign paradigms and methods of analysis.			
5.	To synthesize efficient algorithms	in common engineering design situations.			
Pre-F	Requisite:				
1.	Programming for Problem Solving	g (ES-CS201)			
2.	Data Structure & Algorithm (PC-F	ECS 302)			
3.	Object Oriented Programming (PC	C-ECS 405)			
Unit		Content	Hrs	Marks	
1	Introduction: Characteristics	of algorithm. Analysis of algorithm:	06		
		ty bounds – best, average and worst-case			
		nents of Algorithm, Time and space trade-			
	_	gorithms through recurrence relations:			
	Substitution method, Recursion tre		10		
2	_	ategies: Brute-Force, Greedy, Dynamic	10		
		and Backtracking methodologies for the			
		of these techniques for Problem-Solving,			
		P. Heuristics –characteristics and their			
2	application domains.	F	10		
3		Fraversal algorithms: Depth First Search	10		
		BFS); Shortest path algorithms, Transitive			
		ee, Topological sorting, Network Flow			
	Algorithm.	H C 4172 C 41 3	00		
4		oblems: Computability of Algorithms,	08		
		P complete and NP-hard. Cook's theorem,			
	Standard NP-complete problems a	•	0.0		
5		on algorithms, Randomized algorithms,	06		
	Class of problems beyond NP – P	SPACE			

Text books:

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

- 2. Fundamentals of Algorithms E. Horowitz et al.
- 3. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.
- 4. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.

Reference books:

- 1. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA
- 2. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House (AICTE Recommended Textbook 2018)
- 3. Algorithms Design and Analysis, Udit Agarwal, Dhanpat Rai

Course Outcomes

On completion of the course students will be able to

- 1. analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms.
- 2. describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given problem develop the greedy algorithms.
- 3. describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Synthesize divide-and-conquer algorithms. Derive and solve recurrence relation.
- 4. describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. For a given problems of dynamic-programming and
- 5. develop the dynamic programming algorithms, and analyze it to determine its computational complexity.
- 6. explain the ways to analyze randomized algorithms (expected running time, probability of error).

Special Remarks:

Name of the course	COMPUTER NETWORK
Course Code: PC-ECS 602B	Semester: 6 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks

Practi	cal: 0 hrs/week	Attendance: 05 Marks		
Credi	Credit Points: 3 End Semester Exam: 70 Marks			
Obje	ctive:			
1.	To develop an understanding of modern network architectures from a design and			
	performance perspective.			
2.	To introduce the student to the maj	jor concepts involved in wide-area networks	s (WA)	Ns),
	local area networks (LANs) and W			
3.	To provide an opportunity to do ne			
4.	To provide a WLAN measurement	ideas.		
Pre-R	Requisite:			
1.	Computer Organisation & Architecture	eture (PC-ECS 406)		
2.	Operating Systems (PC-ECS 501)			
Unit		Content	Hrs	Marks
1	Data communication Compone	nts: Representation of data and its flow	08	
	Networks, Various Connection Topology, Protocols and Standards, OSI			
	model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting			
	LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing -			
		n and Wave division, Concepts on spread		
	spectrum Data Link Lawar and Madium	Access Sub-Lawara Eman Detection and	00	
2	•	Access Sub Layer: Error Detection and	08	
	·	Block coding, Hamming Distance, CRC;		
		protocols - Stop and Wait, Go back - N		
	•	Sliding Window, Piggybacking, Random		
	Access, Multiple access JALOHA,CSMA/CD,CDMA/CA	protocols -Pure ALOHA, Slotted		
3	· ·	gical addressing – IPV4, IPV6; Address	10	
3		P and DHCP–Delivery, Forwarding and	10	
	Unicast Routing protocols	and Differ—Denvery, Forwarding and		
4	0 1	Process Communication, User Datagram	08	
7		ontrol Protocol (TCP), SCTP Congestion	00	
		improving techniques: Leaky Bucket and		
	Token Bucket algorithm.	improving commiques. Deaky Ducket and		
	1 OROH Ducket digorithm.		1	1
5	Application Laver: Domain N	Jame Space (DNS) DDNS TELNET	06	
5	••	Name Space (DNS), DDNS, TELNET, (FTP), WWW, HTTP, SNMP, Bluetooth,	06	

Text books:

1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.

2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.

Reference books:

- 1. "Algorithm Design" by Kleinberg and Tardos.
- 2. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi

Course Outcomes

On completion of the course students will be able to

- 1. understand research problem formulation.
- 2. analyze research related information
- 3. follow research ethics
- 4. understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. understand that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Special Remarks:

Name of the course	SOFTWARE ENGINEERING
Course Code: PC-ECS 602C	Semester: 6 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks
Practical: 0 hrs/week	Attendance: 05 Marks
Credit Points: 3	End Semester Exam: 70 Marks

Obje	ctive:		
1.	Understand the software development life cycle (SDLC) and its various mode	ls.	
2.	Apply systematic engineering approaches to software design, development, testing, and		
	maintenance.		
3.	Analyze user requirements and design software solutions that are scalable, eff	icient,	and
	reliable.		
4.	Employ best practices in software project management, including cost estimat	ion,	
	scheduling, and risk management		
5.	Utilize modern development tools and techniques for version control, debuggi	ng, an	d
	documentation.		
6.	Understand the importance of software quality assurance and testing strategies	S.	
7.	Collaborate effectively in teams and communicate technical concepts clearly.		
8.	Address ethical, legal, and social issues related to software development and u	ısage.	
Pre-F	Requisite:		
1.	Programming for Problem Solving (ES-CS291)		
2.	Data Structure & Algorithm (PC-ECS 302)		
3.	Object Oriented Programming (PC-ECS 405)		
Unit	Content	Hrs	Marks
Unit	Introduction: Overview of System Analysis & Design, Business System	Hrs 10	Marks
	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model,		Marks
	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis,		Marks
	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model,		Marks
1	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model.	10	Marks
1	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-	10	Marks
1	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured	10	Marks
2	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach.	05	Marks
2	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. Coding & Documentation: Structured Programming, OO Programming,	05	Marks
2	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. Coding & Documentation: Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. Testing – Levels of	05	Marks
2	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. Coding & Documentation: Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment,	05	Marks
2	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. Coding & Documentation: Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification Metrics, Monitoring & Control. Software Project Management: Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring.	05 08	Marks
2	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. Coding & Documentation: Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification Metrics, Monitoring & Control. Software Project Management: Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring. Static and dynamic models: why modelling, UML diagrams: Class	05	Marks
1 2 3	Introduction: Overview of System Analysis & Design, Business System Concept, System Development Life Cycle, Waterfall Model, Spiral Model, Feasibility Analysis, Technical Feasibility, Cost- Benefit Analysis, COCOMO model. System Design: Context diagram and DFD, Problem Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured English; Functional vs. Object- Oriented approach. Coding & Documentation: Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation. Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability Assessment, Validation & Verification Metrics, Monitoring & Control. Software Project Management: Project Scheduling, Staffing, Software Configuration Management, Quality Assurance, Project Monitoring.	05 08	Marks

Text books:

- 1. Pressman, Software Engineering: A practitioner's approach—(TMH)
- 2. Pankaj Jalote, Software Engineering- (Wiley-India)

3. N.S. Gill, Software Engineering – (Khanna Publishing House)

Reference books:

- 1. Rajib Mall, Software Engineering- (PHI)
- 2. Agarwal and Agarwal, Software Engineering (PHI)
- 3. Sommerville, Software Engineering Pearson
- 4. Martin L. Shooman, Software Engineering TMH

Course Outcomes

On completion of the course students will be able to

- 1. understand and explain fundamental software engineering concepts, including software process models, development methodologies, and lifecycle activities.
- 2. analyze, and document functional and non-functional requirements for software systems.
- 3. design software systems using appropriate design principles and notations such as UML.
- 4. apply coding standards, software construction practices, and modern development tools to implement software solutions.
- 5. develop and execute various software testing strategies to ensure software quality and reliability.
- 6. manage software development projects by estimating cost, scheduling tasks, and tracking progress using project management techniques.

Special Remarks:

Name	of the course	EMBEDDED SYSTEM
Cours	e Code: OE-ECS 601A	Semester: 6 th
Durat	ion: 6 months	Maximum Marks: 100
Teach	ning Scheme	Examination Scheme
Theor	y: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutor	ial: 0 hr/week	Assignment & Quiz: 10 Marks
Practi	cal: 0 hrs/week	Attendance: 05 Marks
Credi	t Points: 3	End Semester Exam: 70 Marks
Objec	ctive:	
1.	Understand the architecture a	nd functioning of microcontrollers and embedded processors.

2.	Explore the principles of embedded system design, including both hardware as components.	nd sof	tware
3.	1	on C/0	T++ and
3.	Learn programming techniques specific to embedded systems, with emphasis on C/C++ and assembly language.		
4.	Interface embedded systems with various peripherals and sensors using GPIO, timers,		
	ADCs, communication protocols (UART, SPI, I2C, etc.).	,	,
5.	Analyze real-time operating system (RTOS) concepts and their role in embedd	led	
	applications.		
6.	Develop, test, and debug embedded applications using development boards an	d sim	ılation
	tools.		
7.	Apply embedded system concepts in solving real-world problems through min	i or ca	apstone
	projects.		
Pre-R	Requisite:		
1.	Analog & Digital Electronics (ES-ECS 301)		
2.	Microcontroller & it's Application (PC-ECS 503)		
3.	Computer Organisation & Architecture (PC-ECS 406)		
Unit	Content	Hrs	Marks
			Maiks
1	Introduction to Embedded Systems: Definition of Embedded System,	05	
	Embedded Systems Vs General Computing Systems, History of		
	Embedded Systems, Classification, Major Application Areas, Purpose of		
	Embedded Systems, Characteristics and Quality Attributes of Embedded		
	Systems.	0=	
2	Typical Embedded System: Core of the Embedded System: General	07	
	Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-		
	The-Shelf Components (COTS), Memory: ROM, RAM, Memory according		
	to the type of Interface, Memory Interfacing techniques, Memory		
	Shadowing, Memory selection For Embedded Systems, Sensors and		
	Actuators, Communication Interface: Onboard and External Communication		
	Interfaces.	-10	
3	Advanced Embedded Microcontrollers: PIC Microcontrollers:	12	
	Overview and features; PIC 16C6X/7X - File Selection Register (FSR), PIC		
	Reset Actions, PIC Oscillator connections, PIC Memory Organization, PIC		
	16C6X/7X instructions, Addressing Modes, I/O Ports, Interrupts in PIC		
	16C61/71, Timers. PIC 16F8XX Flash		
	Microcontroller – Introduction, Pin diagram, Registers, Memory		
	organization, Interrupts, I/O Ports, Timers. Introduction to AVR		
	microcontroller: Introduction to AVR (ATmega 328p-pu) microcontroller,		
	pin layout, architecture, program memory, Data Direction register, Port		
	Registers (PORTx), PWM registers (8-bit), ADC registers.		
	Introduction to ARM microcontroller: Architecture of ARM Embedded		
	microcontroller, ARM instruction sets		
4	Embedded Firmware: Reset Circuit, Brown-out Protection Circuit,	06	
	Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware		
	Design Approaches and Development Languages.		
5	RTOS Based Embedded System Design: Operating System Basics,	10	

Types of Operating Systems, Tasks, Process and Threads, Multiprocessing
and Multitasking, Task Scheduling, Task Synchronization: Task
Communication/Synchronization Issues, Task Synchronization Techniques,
Device Drivers, How to Choose an RTOS.

Text books:

- 1. Introduction to Embedded Systems, Shibu K.V, Mc Graw Hill. 2017.
- 2. Embedded Systems Architecture, Programming and design, Raj Kamal, McGraw Hill Education, 2017

Reference books:

- 1. Embedded System Design: A unified Hardware/ Software introduction, Tony Givargis and Frank Vahid, Wiley 2006
- 2. Design with PIC Microcontrollers, J. B. Peatman, Pearson India, 2008

Course Outcomes

On completion of the course students will be able to

- 1. explain the architecture and working of microcontrollers and embedded processors.
- 2. develop embedded C/assembly programs for microcontroller-based applications.
- 3. design and implement embedded systems interfacing with external devices like LEDs, sensors, motors, and displays.
- 4. utilize communication protocols (e.g., UART, SPI, I2C) to enable device-to-device interaction.
- 5. analyze the role and functionality of Real-Time Operating Systems (RTOS) in embedded applications.
- 6. develop and debug embedded system projects using development tools such as IDEs, simulators, and hardware kits.

Special Remarks:

Name of the course	ROBOTICS
Course Code: OE-ECS 601B	Semester: 6 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutorial: 0 hr/week	Assignment & Quiz: 10 Marks
Practical: 0 hrs/week	Attendance: 05 Marks
Credit Points: 3	End Semester Exam: 70 Marks
Objective:	
1. Understand the structure, type	s, and functions of robotic systems.

2.	Analyze and model robot kinematics and dynamics for motion and control.			
3.	Explore various actuators, sensors, and control strategies used in robotics.			
4.	Learn techniques for path planning, navigation, and robot programming.			
5.	Use simulation tools and hardware platforms to design and implement robotic applications			
Pre-F	Requisite:			
1.	Programming for Problem Solving (ES-CS291)			
2.	Introduction to Artificial Intelligence & Machine Learning (PC-ECS 404)			
3.	Microcontroller & it's Application (PC-ECS 503)			
4.	Control Systems (PC-ECS 502)			
	, , , , , , , , , , , , , , , , , , ,			
Unit	Content	Hrs	Marks	
1	Introduction: Introduction brief history, types, classification and usage,	01		
	Science and Technology of robots, Some useful websites, textbooks and research	-		
	journals.			
2	Elements of robots – links, joints, actuators, and sensors:	05		
	Position and orientation of a rigid body, Homogeneous transformations,			
	Representation of joints, link representation using D-H parameters,			
	Examples of D-H parameters and link transforms, different kinds of actuators -			
	stepper, DC servo and brushless motors, model of a DC servo motor, Types of			
	transmissions, Purpose of sensors, internal and external sensors, common sensors –			
	encoders, tachometers, strain gauge based force-torque sensors, proximity and			
	distance measuring sensors, and vision.	0.4		
3	Kinematics of serial robots: Introduction, Direct and inverse kinematics problems,	04		
	Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots, Tractrix based approach for			
	fixed and free robots and multi-body systems, simulations and experiments,			
	Solution procedures using theory of elimination, Inverse kinematics solution for the			
	general 6R serial manipulator.			
4	Kinematics of parallel robots: Degrees-of-freedom of parallel mechanisms and	05		
	manipulators, Active and passive joints, Constraint and loop-closure equations,			
	Direct kinematics problem, Mobility of parallel manipulators, Closed-from and			
	numerical solution, Inverse kinematics of parallel manipulators and mechanisms,			
	Direct kinematics of Gough-Stewart platform.			
5	Velocity and static analysis of robot manipulators: Linear and angular velocity	05		
	of links, Velocity propagation, Manipulator Jacobians for serial and parallel			
	manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and			
	parallel manipulators, Loss and gain of degree of freedom, Statics of serial and			
	parallel manipulators, Statics and force transformation matrix of a Gough-			
	Stewart platform, Singularity analysis and statics.			
6	Dynamics of serial and parallel manipulators: Mass and inertia of links,	04		
	Lagrangian formulation for equations of motion for serial and parallel manipulators,			
	Generation of symbolic equations of motion using a computer, Simulation			
	(direct and inverse) of dynamic equations of motion, Examples of a planar 2R and			
	four-bar mechanism, Recursive dynamics, commercially available			

	multi-body simulation software (ADAMS) and Computer algebra software		
	Maple.		
7	Motion planning and control: Joint and Cartesian space trajectory planning	06	
	and generation, Classical control concepts using the example of control of a single		
	link, Independent joint PID control, Control of a multi-link manipulator, Non-linear		
	model based control schemes, Simulation and experimental case studies on serial and		
	parallel manipulators, Control of constrained manipulators, Cartesian control, Force		
	control and hybrid position/force control, Advanced topics in non-linear control of		
	manipulators.		
8	Modelling and control of flexible robots: Models of flexible links and joints,	04	
	Kinematic modelling of multi- link flexible robots, Dynamics and control of flexible		
	link manipulators, Numerical simulations results, Experiments with a planar two-		
	link flexible manipulator.		
9	Modelling and analysis of wheeled mobile robots: 3Introduction and some well-	03	
	known wheeled mobile robots (WMR), two and three-wheeled WMR on flat		
	surfaces, Slip and its modelling, WMR on uneven terrain, Design of slip-free		
	motion on uneven terrain, Kinematics, dynamics and static stability of a three-		
	wheeled WMR's on uneven terrain, Simulations using Matlab and ADAMS.		
10	Selected advanced topics in robotics: Introduction to chaos, Non-linear dynamics	03	
	and chaos in robot equations, Simulations of planar 2 DOF manipulators, Analytical		
	criterion for unforced motion. Gough- Stewart platform and its singularities, use of		
	near singularity for fine motion for sensing, design of Gough-Stewart platform-		
	based sensors. Over- constrained mechanisms and deployable structures, Algorithm		
	to obtain redundant links and joints, Kinematics and statics of deployable		
	structures with pantographs or scissor-like elements (SLE's).		

Text books:

- 1. Robotics Process Automation, Khanna Publishing House
- 2. Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014.

Reference books:

1. Ghosal, A., "Robotics", Oxford, New Delhi, 2006.2. Design with PIC Microcontrollers, J. B. Peatman, Pearson India, 2008

Course Outcomes

On completion of the course students will be able to

- 1. understand and explain the fundamental concepts, components, and classifications of robotic systems.
- 2. analyze the kinematics and dynamics of robotic manipulators using mathematical models.
- 3. design robotic systems considering actuators, sensors, end-effectors, and control systems.
- 4. apply algorithms for robot motion planning, pathfinding, and trajectory generation.
- 5. integrate hardware and software components to develop simple robotic applications.
- 6. use simulation tools and development platforms (e.g., MATLAB, ROS, Arduino) for robotic system design and testing.

Special Remarks:

Name	e of the course	SENSORS & ACTUATORS
Cour	se Code: OE-ECS 601C	Semester: 6 th
Duration: 6 months		Maximum Marks: 100
Teac	hing Scheme	Examination Scheme
	ry: 3 hrs/week	Mid Semester Exam: 15 Marks
Tutor	rial: 0 hr/week	Assignment & Quiz: 10 Marks
Practical: 0 hrs/week		Attendance: 05 Marks
Credit Points: 3		End Semester Exam: 70 Marks
Obje	ctive:	
1.	Understanding basic laws and phenomena on which operation of sensors and actuators	
	transformation of energy.	
2.	Create analytical design and development solutions for sensors and actuators.	
3.	To know the basic laws of behaviour of sensors and actuators.	

4.	To able to know about the Standards for Smart Sensor Interface		
5.	Analyse the development and application of sensors and actuators.		
Pre-I	Requisite:		
1.	Programming for Problem Solving (ES-CS201)		
2.	Electric Circuit Theory Laboratory (PC-ECS 301)		
3.	Introduction to Artificial Intelligence & Machine Learning (PC-ECS 404)		
4.	Microcontroller & it's Application (PC-ECS 503)		
Unit	Content	Hrs	Marks
			1414113
2	Introduction to different Sensors: Measurement system architecture, Overview of Signal Conditioning, measurement characteristics, Sensors and Transducers, Selection of Sensors, Basic Interfacing circuits. Electrical Sensors: Hall effect sensor, CT, PT, Inductance and Eddy Current Sensors. Thermal Sensors: RTD, Thermistors, Thermocouples, Thermal IC Sensors. Mechanical Sensors: Displacement- LVDT, Velocity, accelerometer, gyro, Pressure, Flow, level, Proximity, humidity, Force, optical. Error budgeting: Errors due to resistance drift, offset voltage drift, offset current drift and temperature drift. Analog Signal Conditioning: Principles of analog signal conditioning,	10	
	Instrumentation amplifier, Signal-Level and Bias Changes, Linearization, Conversions, Filtering, and Impedance Matching. Concept of Loading, Sensor-to-Frequency Conversion. Data-Acquisition Systems: Hardware and Software components of Data Acquisition System (DAS). Characteristics of digital data: Digitized Value, Sampled Data Systems.		
3	Actuation systems: Pneumatic and Hydraulic Systems: Directional Control Valves - Rotary Actuators. Mechanical Actuation Systems - Mechanical Switches - Cams - Gear Trains - Ratchet and Pawl - Belt and Chain Drives - Bearings. Electrical Actuation Systems - Solid State Switches - Solenoids. Smart sensors - communication. Case Study: Applications of sensors and actuators	08	
4	Smart Sensors: Introduction, Primary Sensors, Excitation, Converters, Compensation, Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface, the Automation. Sensors Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors.	10	

Text books:

- 1. Robert B. Northrop, "Introduction to Instrumentation and Measurement", 3rd Edition, CRC Press Taylor and Francis Group.
- 2. Patranabis, "Sensors and Transducers", 2nd Edition, Prentice Hall of India, 2013.

Reference books:

- 1. Paul Horowitz and Winfield Hill, "The Art of Electronics", 2nd Edition, Cambridge University Press, 1992.
- 2. Curtis D. Johnson, "Process Control Instrumentation Technology", 6th Edition, Prentice Hall International Edition.
- 3. Ida, Nathan., "Sensors, actuators, and their interfaces: a multidisciplinary introduction", No. 11040. SciTech Publishing Inc, 2013.
- 4. John G. Webster, "Measurement, Instrumentation, and Sensors Handbook", CRC Press Taylor and Francis Group, 1999.
- 5. Pallas-Areny, Ramon, and John G. Webster. Sensors and signal conditioning. John Wiley & Sons, 2012.
- 6. J. P. Bentley, "Principles of Measurement systems", 4th Edition, Pearson education ltd, UK, 2005
- 7. G.C.M. Meijer, "Smart Sensor Systems", Vol 10, John Wiley and Sons, UK, 2008.

Course Outcomes

On completion of the course students will be able to

- 1. understand the characteristics and operating principles of different types of sensors.
- 2. select different actuators for various applications.
- 3. apply different analog and digital signal conditioning techniques for sensor circuits.
- 4. design and analyse sensor-based applications

Special Remarks:

Name of the course		VALUES AND ETHICS IN PROFESSION
Course Code: HU 601		Semester: 6 th
Durat	ion: 6 months	Maximum Marks: 100
Teach	ning Scheme	Examination Scheme
Theory: 3 hrs/week		Mid Semester Exam: 15 Marks
Tutorial: 0 hr/week		Assignment & Quiz: 10 Marks
Practical: 0 hrs/week		Attendance: 05 Marks
Credit Points: 3		End Semester Exam: 70 Marks
Objec	ctive:	
1.	To inculcate Human values to grow as a responsible human beings with a proper	
	personality.	
2.	2. To instill Professional Ethics to maintain ethical conduct and discharge professional duties.	

Pre-R	Requisite:		
	NOT APPLICABLE		
Unit	Content	Hrs	Marks
1	Human values: Morals, Values, and Ethics – Integrity –Trustworthiness – Work	03	
	Ethics – Service-Learning – Civic Virtue – Respect for others – Living Peacefully –		
	Caring – Sharing – Honesty – Courage – Value Time – Co-operation – Commitment		
	– Empathy – Self-confidence –Spirituality- Character.		
2	Principles for harmony: Truthfulness customs, Traditions -Value Education –	08	
	Human Dignity – Human Rights – Fundamental Duties – Aspirations and Harmony		
	(I, We & Nature) – Gender Bias – Emotional Intelligence– Salovey – Mayer Model		
	- Emotional Competencies - Conscientiousness.		
3	Engineering Ethics and Social experimentation: Senses of Engineering Ethics-	08	
	Profession and Professionalism —Self Interest –Moral Autonomy – Utilitarianism		
	- Virtue Theory - Uses of Ethical Theories - Deontology- Types of Inquiry -		
	Kohlberg's Theory -Gilligan's Argument - Heinz's Dilemma - Comparison with		
	Standard Experiments — Learning from the Past – Engineers as Managers –		
	Consultants and Leaders – Balanced Outlook on Law – Role of Codes – Codes and		
	Experimental Nature of Engineering		
4	Engineers' responsibility towards safety and risk for sustainable development:	09	
	The concept of Safety - Safety and Risk - Types of Risks -Voluntary v/s		
	Involuntary Risk - Consequences - Risk Assessment-Accountability - Liability -		
	Reversible Effects – Threshold Levels of Risk – Delayed v/s Immediate Risk –		
	Safety and the Engineer – Designing for Safety – Risk-Benefit Analysis-Accidents.		
5.	Engineers' duties and rights: Concept of Duty – Professional Duties –	05	
	Collegiality – Techniques for Achieving Collegiality – Senses of Loyalty –		
	Consensus and Controversy – Professional and Individual Rights – Confidential		
	and Collective Bargaining – Confidentiality – Gifts and Bribes –Problem Solving-		
	Occupational Crimes- Industrial Espionage- Price Fixing-Whistle Blowing.		
6.	Global issues: Globalization and MNCs, Cross Culture Issues – Business Ethics –	05	
	Media Ethics – Environmental Ethics – Endangering Lives – Bio Ethics –		
	Computer Ethics – War Ethics – Research Ethics -Intellectual Property Rights.		

Text books:

- 1. Professional Ethics & Human Values, Premvir Kapoor, Khanna Publishing House, Delhi (AICTE Recommended Textbook).
- 2. A text book on professional Ethics & Human values, R.S. Naagarazan, New Age international Publishing.
- 3. Engineering Ethics, M. Govindarajan, S. Natarajan, V.S. Senthilkumar, Prentice Hall India.
- 4. Human value and professional Ethics, Jayshree Suresh, B.S. Raghvan, S. Chand Publishing

Reference books:

- 1. Deborah Johnson, Ethical Issues in Engineering, Prentice Hall, Englewood Cliffs, New Jersey 1991.
- 2. A N Tripathi, Human values in the Engineering Profession, Monograph published by IIM, Calcutta 1996.

Course Outcomes

On completion of the course students will be able to

- 1. illustrate different aspects of human values, ethics, engineers' responsibility and duties
- 2. explain different principles, different theories and laws of engineering ethics and social experimentation
- 3. identify different factors in the light of Engineers' responsibility towards safety and risk
- 4. correlate ethics of different work environment.
- 5. explain the need for intellectual property rights.

Special Remarks:

Name	of the course	POWER ELECTRONICS AND DRIVES LABORATORY
Course Code: PC-ECS 691		Semester: 6 th
Durat	ion: 6 months	Maximum Marks: 100
Teach	ning Scheme	Examination Scheme
Theor	y: Nil	Continuous Internal Assessment:40
Tutorial: Nil		External Assessment: 60
Practical: 2 hrs/week		
Credit Points: 1		
		Laboratory Experiments:
1.	Gate Pulse Generation using R, RC and UJT.	
2.	Characteristics of SCR and Triac	
3.	Characteristics of MOSFET and IGBT	
4.	AC to DC half controlled converter with different load.	

5.	AC to DC fully controlled Converter with different load.	
6.	Step down and step up MOSFET based choppers	
7.	. IGBT based single phase PWM inverter	
8.	IGBT based three phase PWM inverter	
9.	AC Voltage controller with different load.	
10.	Switched mode power converter.	
11.	Simulation of PE circuits (1Φ&3Φsemiconverter, 1Φ&3Φfullconverter, dc-dc Converters,	
	ac voltage controllers).	

Course Outcome:

After completion of this course, the learners will be able to

- 1. analyze and verify the performance of power electronic devices such as SCR, TRIAC, MOSFET, and IGBT through experiments.
- 2. demonstrate the operation of various power converters, including rectifiers, inverters, choppers, and AC voltage controllers.
- 3. evaluate the characteristics and control methods of electric drives using power electronic converters.
- 4. design and implement triggering circuits for thyristor-based applications.
- 5. control the speed of DC and AC motors using appropriate power electronic drive circuits.
- 6. use simulation tools (e.g., MATLAB/Simulink or PSPICE) to model and analyze power electronic systems.

Special Remarks:

Name of the course		DATABASE MANAGEMENT SYSTEM
		LABORATORY
Course	e Code: PC-ECS 692	Semester: 6 th
Durati	on: 6 months	Maximum Marks: 100
Teach	ing Scheme	Examination Scheme
Theory: Nil		Continuous Internal Assessment:40
Tutorial: Nil		External Assessment: 60
Practio	cal: 2 hrs/week	
Credit	Points: 1	
	Lat	poratory Experiments:
1.	Structured Query Language	
	Creating Database	
	• Creating a Database	
	• Creating a Table	

	Specifying Relational Data Types			
	Specifying Constraints			
	Creating Indexes			
2.	Table and Record Handling			
	INSERT statement			
	Using SELECT and INSERT together			
	DELETE, UPDATE, TRUNCATE statements			
	DROP, ALTER statements			
3.	Retrieving Data from a Database			
	i. The SELECT statement			
	ii. Using the WHERE clause			
	iii. Using Logical Operators in the WHERE clause			
	iv. Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING Clause			
	v. Using Aggregate Functions			
	vi. Combining Tables Using JOINS			
	vii. Subqueries			
4.	Database Management			
	Creating Views			
	Creating Column Aliases			
	Creating Database Users			
	Using GRANT and REVOKE			
5.	Cursors in Oracle PL / SQL			
	Writing Oracle PL / SQL Stored Procedures			

Course Outcome:

After completion of this course, the learners will be able to

- 1. design and implement relational database schemas using ER modelling and normalization techniques.
- 2. create, modify, and manage databases using Structured Query Language (SQL) effectively.
- 3. develop SQL queries to retrieve, update, and manipulate data from multiple tables using joins, subqueries, and set operations.
- 4. implement constraints, views, triggers, and stored procedures/functions to enforce data integrity and business rules.
- 5. perform database transaction management with concepts like commit, rollback, and concurrency control.
- 6. use database connectivity in applications by integrating a front-end programming language with a backend database.

Special Remarks:

Name	of the course	Computer-Aided Electrical [Machine] Design Laboratory
Course Code: PC-ECS 693		Semester: 6 th
Duration: 6 months		Maximum Marks: 100
Teach	ning Scheme	Examination Scheme
Theor	y: Nil	Continuous Internal Assessment:40
Tutori	ial: Nil	External Assessment: 60
Practical: 2 hrs/week		
Credit Points: 1		
		Laboratory Experiments:
1.	Introduction Matlab software	е
2.	2. Design of D.C. Machine By Using Matlab	
3.	3. Design of 3-φ Transformer By Using Matlab	
4.	4. Design of 1-φ Induction Motor By Using Matlab	
5.	5. Design of Synchronous Machine By Using Matlab	
6.	Design of Circuit Breaker Operation By using Matlab	

7.	Testing of Different Types of Relays By Using Matlab	
8.	Study of Protective Equipment & Layout of 220/11KV Substation	
9.	Design of Surge Arresters in Transmission System By Using Matlab	
10.	Design and Parameter Estimation of Alternator By Using Matlab	

Course Outcome:

After completion of this course, the learners will be able to

- 1. understand the principles and design procedures of electrical machines using computer-aided tools.
- 2. design DC machines, transformers, and AC machines (induction and synchronous) based on given specifications.
- 3. utilize simulation and design software (such as MATLAB, ANSYS Maxwell, or FEMM) for modelling and analysis of electrical machines.
- 4. analyze the performance characteristics of designed machines using computer-based tools and validate against theoretical calculations.
- 5. evaluate core dimensions, winding details, and thermal performance of electrical machines.
- 6. develop custom scripts or programs for parametric machine design and optimization.

Special Remarks: